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Analyzing Hedging Strategies for Fixed Income Portfolios:  

A Bayesian Approach for Model Selection 

 

 

Abstract 

 

During the recent European sovereign debt crisis, returns on EMU government bond portfoli-

os experienced substantial volatility clustering, leptokurtosis and skewed returns, as well as 

correlation spikes. Asset managers invested in European government bonds had to derive new 

hedging strategies to deal with the changing return properties and the higher level of uncer-

tainty. In this market environment, conditional time series approaches such as GARCH mod-

els might be better suited to achieve a superior hedging performance relative to unconditional 

hedging approaches such as OLS. The aim of this study is to develop and evaluate improved 

hedging strategies for EMU bond portfolios for non-crises and crises periods. The empirical 

analysis includes OLS, constant conditional correlation (CCC), and dynamic conditional cor-

relation (DCC) multivariate GARCH models. In addition, we introduce a Bayesian composite 

hedging strategy, attempting to combine the strengths of OLS and GARCH models, thereby 

endogenizing the dilemma of selecting the best estimation model. During the European sover-

eign debt crisis yield spreads among EMU member countries widened and the well estab-

lished hedging instruments such as the Bund futures suddenly were inapt to minimize the risk 

exposure of European government bond portfolios. As a consequence, Eurex introduced new 

future contracts on Italian government securities (BTP). Therefore, in this study we analyze 

single and composite hedging strategies with the German Bund and the Italian BTP futures 

contracts empirically and evaluate the hedging effectiveness in an out-of-sample setting. Our 

empirical results demonstrate that the Bayesian composite hedging strategy was particularly 

superior during the recent sovereign debt crisis period. 
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1. Introduction 

Subsequent to the introduction of the Euro in 1999, government bond yields of countries 

within the European monetary union (EMU) converged and basically co-moved until the be-

ginning of the financial crisis in 2008 (Figure 1). Consequently, yield spreads between differ-

ent EMU government bonds were low and relatively stable reflecting little differences in sov-

ereign risk or the belief that EMU member countries would bail-out each other in case of fi-

nancial distress. As a result, futures contracts of different EMU government bonds were very 

good substitutes in a sense that futures contracts on bonds of one country could be used to 

efficiently hedge government bonds of other EMU countries. Since the last quarter of 1998 

trading activity has increasingly been concentrated in the futures based on German bonds 

traded at Eurex offering market participants market depth and liquidity (Blanco, 2001). Turn-

over on futures contracts based on French, Italian and Spanish bonds decreased to historical 

low levels and, as a consequence, were finally closed and removed from the market. 

With the emerging of the financial crisis in mid 2008, sovereign risk became increasingly 

important for EMU bond portfolios and sovereign risk levels of EMU member countries di-

verged. Hence, the established hedging instruments on German government bonds were inapt 

for hedging sovereign risk of lower rated EMU countries. Thus, Eurex re-introduced futures 

contracts on Italian government securities (BTP). 

 Moreover, during the European sovereign debt crisis government bond returns became 

highly dependent on political events. Figure 2 presents important political events and its in-

fluence on returns of EMU bond-portfolios, German Bund and Italian BTP futures. During 

the sovereign debt crisis the time series of EMU government bond returns exhibits positive 

excess kurtosis and GARCH-effects (Sibbertsen, Wegener, and Basse, 2014). Therefore, asset 
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managers invested in European government bonds had to derive new hedging strategies to 

deal with the increased uncertainty and changing return dynamics.  

The objective of this study is to develop and investigate improved hedging strategies for 

EMU bond portfolios for non-crises and crises periods. Given the heterogeneity of sovereign 

risk levels during the recent sovereign debt crisis, we analyze the improvement in hedging 

performance by extending the hedging framework from one instrument hedges (single hedg-

es) to two instrument-hedges (composite hedges), employing traditional (Bund-futures) and 

newly (re-)introduced futures contracts on Italian government bonds (BTP-futures). From a 

modeling perspective, traditional unconditional hedging approaches such as the minimum 

variance OLS hedge (Houthakker, 1959; Johnson, 1960; Stein, 1961) might not yield efficient 

hedging results during the sovereign debt crisis due to the assumption of a constant return 

covariance matrix. In contrast, hedging strategies based on multivariate GARCH (MGARCH) 

models (Baillie and Myers, 1991; Cecchetti, Cumby and Finglewski, 1988)
1
 might provide a 

superior hedging efficiency. Therefore, in this study we employ OLS,  constant conditional 

correlation (CCC) (Bollerslev, 1990), and dynamic conditional correlation (DCC) (Engle, 

2002) multivariate GARCH models for hedging European government bond portfolios before 

and during the sovereign debt crisis and evaluate and compare their out-of-sample hedging 

effectiveness. Finally, we employ a Bayesian hedging strategy (Poomimars, Cadle and Theo-

bald, 2003), attempting to control for estimation errors in GARCH models and to reduce fu-

tures turnover.  

Our research contributes to the literature in several dimensions. First, we provide empiri-

cal evidence on the hedging effectiveness of simple OLS and sophisticated time series hedg-

ing (MGARCH) strategies for bond portfolios during the pre-crisis and the sovereign debt 

crisis period. While, there are numerous studies on the hedging effectiveness of OLS- com-

                                                 
1
 Related approaches include cointegration methods (e.g. Ghosh, 1993; Kroner and Sultan, 1993). 
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pared to MGARCH hedging strategies for commodities, currency, and equity portfolios (Bail-

lie and Myers, 1991; Myers, 1991; Kroner and Sultan, 1993; Tong 1996; Lien, Tse and Tsui, 

2002; Alexander and Barbosa, 2007), there is still little evidence on the performance of these 

models for bond portfolios and during financial crisis periods (Cecchetti, Cumby and 

Finglewski, 1988; Koutmos and Pericil 1999). The success of a hedging strategy is particular-

ly important during crisis periods in which asset returns are highly volatile and the risk of 

severe losses is increased. Conditional time series hedging approaches (MGARCH) might be 

particularly beneficial compared to unconditional approaches (OLS) during crisis periods. 

Second, we analyze single and composite hedges for EMU government bond portfolios, em-

ploying German and the (re)introduced Italian futures contracts during crisis and non-crisis 

periods for conditional (MGARCH) and unconditional (OLS) hedging methods. Chen and 

Sutcliffe (2012), Bookstaber and Jacob (1986), Ramaswami (1991), Piepta (1990), Morgan 

(2008) and Leschhorn (2001), Bessler and Wolff (2014) provide evidence that combining 

multiple futures contracts improves the hedging effectiveness. However, so far these potential 

benefits were not investigated for conditional estimation methods such as MGARCH for bond 

portfolios. Moreover, most studies neglect the disadvantages associated with an increase in 

transaction costs resulting from employing additional hedging instruments. Therefore, we 

explicitly take transaction costs into account and analyze the relative importance of employ-

ing additional hedging instruments (single vs. composite hedges) compared to employing 

more sophisticated hedge ratio estimation methods (MGARCH vs. OLS hedges). Third, we 

extend Poomimars, Cadle and Theobald’s (2003) Bayesian hedging strategy on composite 

hedges in order to control for estimation errors in MGARCH models.  

Overall, our empirical results indicate, in hindsight, that EMU bond portfolio managers 

should have employed composite hedges with the Bund and BTP-futures relying on OLS or 

Bayesian hedging techniques. We find evidence that Bayesian hedging techniques dominated 
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MGARCH hedges, resulting in a superior hedging effectiveness and reduced futures turnover 

relative to pure MGARCH hedges. Compared to OLS, the Bayesian composite hedging strat-

egy turns out to be particularly beneficial during the sovereign debt crisis period, while in the 

pre-crisis period the difference in hedging effectiveness is only marginal.  

The remainder of the paper is organized as follows. Chapter 2 reviews the relevant litera-

ture on hedging, hedge ratios and hedging effectiveness measures. The employed dataset is 

discussed in chapter 3. In Chapter 4 we discuss OLS as well as CCC- and DCC-MGARCH 

hedging methodologies. Chapter 5 presents descriptive statistics, the GARCH model selection 

process and the empirical hedging results for OLS and GARCH hedging strategies. Chapter 6 

presents the methodology as well as the empirical results for the Bayesian hedging technique. 

Chapter 7 concludes. 

2. Literature Review  

Two crucial aspects in determining the optimal hedging strategy are the selection of ade-

quate hedging instruments and the computation of the optimal hedge ratios. In the simplest 

case of a direct hedge, derivatives on the spot position are used as hedging instruments. How-

ever, if derivatives on the spot position are not available (as it is the case for EMU bond port-

folios), other hedging instruments which may be selected based on the magnitude of correla-

tion between the asset and the future returns have to be employed (cross hedge). Usually the 

hedging instrument(s) having the highest return correlation(s) with the spot position should be 

selected (Ederington, 1979). In a large number of cross hedges a hedging strategy with more 

than one hedging instrument (composite hedge) might be more effective compared to hedges 

with only one instrument.  

2.1. Single versus Composite Hedging 
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Several studies provide evidence for the benefits of composite hedges for hedging bond 

portfolios. Bookstaber and Jacob (1986) and Ramaswami (1991) hedge high-yield corporate 

bonds using US Treasury bond futures and futures on the corresponding company’s equity, 

finding that composite hedges achieve superior hedging results compared to single hedges. 

Grieves (1986) and Marcus and Ors (1996) provide similar results when hedging US invest-

ment-grade corporate bonds with S&P500 and Treasury bond futures.  

Leschhorn (2001), Pieptea (1990) and Morgan (2008) report that hedges with futures on 

long- and short-term bonds, thus using information along the yield curve, are superior to sin-

gle futures hedges when hedging US or German government bonds. In contrast, Koutmos and 

Pericili (2000) employ multiple futures contracts on Treasury Notes with different maturities 

(2, 5 and 10 years) to hedge mortgage-backed securities (MBS). They conclude that compo-

site hedges - employed in an out-of-sample setting, - are inferior compared to single hedges 

with the 10-year Treasury-Note futures only. However, this may be more due to the fact that 

the characteristics of MBS are quite different from T-Notes rather than due to using different 

contracts along the yield curve. 

Overall, the academic literature provides some empirical evidence for the benefits of 

composite hedges with equity and fixed income futures in the presence of default risk, but 

mixed results for hedging with various fixed income instruments that differ only in the ma-

turity of the underlying. However, a drawback of most studies is that they neglect the increase 

in transaction costs due to employing additional hedging instruments. 

2.2. Determination of Optimal Hedge Ratios  

While the selection of the optimal hedging instruments is not trivial, the determination of 

the optimal hedge ratios might be even more challenging. Various approaches for computing 

optimal hedge ratios were proposed in the literature. The optimal hedge ratio depends on the 
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particular objective function which may either focus only on minimizing risk of the hedge 

portfolio (one-dimensional) or may include return characteristics as well (two-dimensional). 

Moreover, various risk measures can be employed (e.g. return variance, semi-variance, value-

at-risk etc.), resulting in different hedge ratios. Chen, Lee, and Shrestha (2003) and Lien and 

Tse (2011) provide an extensive review of different theoretical approaches to derive the opti-

mal hedge ratio.  

2.2.1. Unconditional Minimum Variance Hedging Approach 

The probably most commonly used hedging approach in the academic literature and 

among practitioners is the one-dimensional minimum variance approach due to its simplicity 

and its validity under ‘reasonable’ assumptions. Moreover, if the expected returns of the 

hedging instruments are zero, as it might be the case for instance for fixed income futures 

contracts if interest rate changes are not anticipated, the one and two dimensional approaches 

result in identical optimal hedge ratios. Houthakker (1959), Johnson (1960) and Stein (1961) 

propose unconditional minimum variance hedges based on sample variances and covariances 

of the spot and futures returns. Ederington (1979) shows that the unconditional minimum var-

iance hedge ratio is equivalent to the OLS regression coefficient when regressing spot on fu-

tures returns. Implicitly, in OLS hedging strategies it is assumed that variances and 

covariances of futures and spot returns are constant over time. Moreover, all observations 

during the sample period obtain equal weights. Thus there are two shortcomings of this ap-

proach: First, most recent developments might not be considered adequately and second, fluc-

tuations of return variances and covariances are ignored.  

2.2.2. Conditional Hedging Approaches 

If the return variances and covariances are time varying and follow certain regularities, 

hedgers might benefit from including information on the contemporaneous market condition 
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Θ when estimating the optimal hedge ratio (Bell and Krasker, 1986). Following this argu-

ment, conditional hedging approaches estimate variances and covariances conditional on the 

available information set Θ. Several empirical studies (e.g. Mandelbrot, 1963) document the 

phenomenon of volatility clustering in financial return time series. Engle (1982) and 

Bollerslev (1986) develop autoregressive conditional heteroskedasticity models (ARCH) and 

generalized autoregressive conditional heteroskedasticity models (GARCH) for modeling and 

estimating time varying volatilities. The extension of these models from univariate to multi-

variate cases was proposed by Engle, Granger and Kraft (1984) for ARCH and by Bollerslev, 

Engle and Wooldridge (1988) for GARCH models. The multivariate GARCH (MGARCH) 

models transfer the notion of volatility clustering to a dynamic modeling of covariances in 

general and to covariance clustering specifically. A few studies apply the MGARCH frame-

work for estimating minimum variance single hedge ratios for commodity and equity markets 

(e.g. Cecchetti, Cumby and Flingwelisky, 1988; Baillie and Myers, 1991; Meyers, 1991; 

Sephton, 1993; Brooks, Henry and Persand, 2002; Lien, Tse and Tsui, 2002; Alexander and 

Barbosa, 2007).  

However, several studies suggest that sophisticated econometric models for estimating 

minimum-variance hedge ratios usually provide negligible economic benefits (Chen, Lee and 

Shrestha, 2003; Byström, 2003; Alexander and Barbosa 2007; Carbonez, Nguyen and Sercu, 

2011; Cotter and Hanly, 2012). Moreover, more advanced econometric regression models 

result in much greater variability of the optimal hedge ratio and substantially larger transac-

tion costs (Alexander and Barbosa, 2007). Nevertheless, particularly during crisis periods 

such as the sovereign debt crisis, characterized by volatility clustering, time-varying and clus-

tered correlations, skewed and fat tailed bond portfolio returns, the MGARCH approach 

might lead to a superior hedging effectiveness compared to OLS. While earlier studies do not 

evaluate the performance of MGARCH hedging strategies during crisis periods, we contribute 
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to the literature by evaluating hedging strategies during the European pre-crisis and recent 

sovereign debt crises period separately. Moreover, with the exception of Chen and Sutcliffe 

(2012), two-instrument (composite) MGARCH hedges have been neglected in the literature. 

We also contribute to the literature by employing composite MGARCH hedges.  

Bollerslev, Engle and Wooldridge’s (1988) propose a flexible VECH MGARCH model 

which was employed for single instrument hedges by Myers (1991). As a shortcoming, this 

model requires a large number of estimation parameters. For a composite hedge with two 

hedging instruments, the number of coefficients to estimate amounts to 78. The large number 

of estimation parameters is associated with high estimation risk and requires large datasets for 

implementation. Therefore, the VECH MGARCH model seems inappropriate for computing 

composite hedges. For the same reason the BEKK-MGARCH model proposed by Engle and 

Kroner (1995) was only applied for single instrument hedges by Baillie and Myers (1991), 

Kroner and Sultan (1993), Koutmos and Pericil (1999) and Brooks, Henry and Persand 

(2002). More restrictive MGARCH models are applied by Cecchetti, Cumby and 

Flingwelisky (1988) based on a multivariate ARCH framework or by Baillie and Myers 

(1991), Bera, Garcia and Roh (1997), Yang and Allen (2005) and Cotter and Hanly (2012) 

who apply a diagonal VECH specification as developed by Bollerslev, Engle and Wooldridge 

(1988). Given the restrictions on the diagonal VECH model to ensure positive 

semidefinitness
2
 as well as the inflexibility of the multivariate ARCH model to present higher 

order of volatility clustering, these models seem inappropriate for practical implementation 

for modeling unknown time varying covariance matrices. Brooks, Henry and Persand (2002) 

as well as Cotter and Hanly (2012) apply asymmetric MGARCH models in order to consider 

asymmetric properties of the return distribution when estimating the optimal hedge ratio. Ac-

                                                 
2
 See Engle and Kroner (1995) and Attanasio (1991) on the exact model requirements for positive 

semidefiniteness and the difficulty to implement these during the estimation process. 
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cording to their studies the out-of-sample hedging effectiveness of this additional specifica-

tion is rather limited. 

Bollerslev (1990) proposes a constant conditional correlation (CCC) MGARCH specifi-

cation which is employed for hedging by Kroner and Sultan (1993), Park and Schwitzer 

(1995), Bera, Garcia and Roh (1997), Lien, Tse and Tsui (2002), Byström (2003), Carbonez, 

Nguyen and Sercu (2011). Compared to the other MGARCH models the CCC model is more 

parsimonious and requires only 12 parameters for composite hedges. As a shortcoming, the 

CCC model assumes constant correlations of model residuals. A less restrictive, but also par-

simonious model is the dynamic conditional correlation (DCC) MGARCH model (Engle, 

2002). The DCC model requires 14 parameters for composite hedges, but has not been used 

for hedging in the literature so far. We contribute to the literature by evaluating single instru-

ment and composite hedging strategies based on CCC- and DCC-MGARCH models.  

A shortcoming of all MGARCH models is that the larger number of estimation parame-

ters compared to OLS is associated with higher estimation errors. As a result, MGARCH 

models often involve a large level of futures turnover resulting in high implementation costs 

which might impede their practical implementation (Alexander and Barbosa, 2007; Line, Tse 

and Tsui, 2002; Poomimars, Cadle and Theobald, 2003; Miffre 2004; Yang and Allen, 2004). 

Poomimars, Cadle and Theobald (2003) propose a Bayesian hedging strategy in order to con-

trol for estimation errors in MGARCH models. We extend this Bayesian hedging approach on 

composite hedges and to DCC-MGARCH models. 

2.3. Hedging effectiveness measures 

After having implemented a specific hedging strategy, the hedging effectiveness has to be 

evaluated. Several measures for evaluating the hedging effectiveness have been proposed in 

the academic literature. The most prominent approach is to measure the variance reduction 
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(Ederington, 1976). However, this measure is downward biased, understating the benefits of 

hedging and, favoring OLS hedges especially in cases of small estimation windows, small 

out-of-sample periods, and small variations in the conditional variance and missing structural 

brakes (Lien, 2005, 2009). Cotter and Hanly (2012) employ alternative measures of risk re-

duction, including the reduction of a portfolio’s value-at-risk and the reduction of a portfolio’s 

lower partial moments (LPM). We employ the hedging effectiveness measures of Ederington 

(1976) and Cotter and Hanly (2012) and additionally measure the futures turnover to deter-

mine the associated costs of each hedging strategy.  

3. Data  

We analyze strategies for hedging EMU government bond portfolios during the time pe-

riod from January 2000 to October 2013 and separate the full sample period into two sub-

periods. The first sub-period ranges from January 2000 to December 2006 and covers the pe-

riod after the introduction of the Euro but before the financial crisis. This period is character-

ized by low and relatively stable yield spreads between EMU government bond yields. The 

second sub-period ranges from January 2007 to October 2013 and includes the financial as 

well as the sovereign debt crisis period. 

To represent EMU government bond portfolios we rely on the JP Morgan EMU Govern-

ment Bond Index 1-10 years. This index reflects the development of the Euro denominated 

government bond market and is widely employed as benchmark for EMU fixed income port-

folios. It contains market capitalization weighted government bonds of EMU member coun-

tries with maturities of one to ten years and is rebalanced on a monthly basis. To compute 

optimal hedge ratios we rely on the price index. Hedge portfolio performance is computed 

based on the total return index which assumes that coupon payments are retained and rein-

vested. 
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As hedging instruments we employ German Bund and Italian BTP10 government bond 

future contracts. Bund and BTP10 futures are contracts on fictive bonds with 6% coupon and 

ten years maturity issued by the governments of Germany and Italy, respectively. While Ger-

man bond futures should be well suited for hedging EMU bond portfolios during the pre-crisis 

period and for hedging low sovereign risk bonds during the crisis period, Italian BTP con-

tracts are expected to be more appropriate for hedging EMU government bonds with a higher 

level of sovereign risk. We assume that futures contracts are rolled forward to implement the 

hedging strategies. Specifically, at the last day of the month before delivery, futures contracts 

are rolled over to the futures with the second nearest maturity. Market prices of futures con-

tracts are obtained from Thomson Reuters Datastream.
3
  

4. Methodology 

For computing optimal hedge ratios we focus on the one dimensional minimum variance 

approaches as it is reasonable to assume that the daily expected returns of the applied hedging 

instruments are zero.
4
 With zero returns for all hedging instruments the resulting optimal 

hedge ratios are identical for both the one and the two dimensional target functions. The min-

imum variance hedge ratio is derived by minimizing the return variance of the hedge portfolio 

P, consisting of spot S and futures positions Fi, with hi being the hedge ratio for the hedging 

                                                 
3
 Market prices of BTP-futures contracts are available up from December 2009 when BTP futures contracts 

were introduced and trading started. To investigate the contribution of these futures contracts for hedging EMU 

bond portfolios throughout the entire financial crisis and sovereign debt crisis period, a longer time series is 

required. Therefore, we compute ‘fair’ BTP futures prices for the time period from January 2006 to December 

2009 and use market prices when available. To calculate theoretic BTP futures prices, we compute the implied 

repo rate (IRR) in each quarter for the set of deliverable Italian government bonds, which is provided by ‘Eurex’. 

From this we identify the cheapest-to-deliver bond and compute the theoretic futures price, taking into account 

accrued interest, financing costs, and the respective conversion factor. As robustness check, we compare the 

theoretically computed prices with the market prices for the period after introduction of the futures. The theoretic 

prices differ only marginally from the market prices, highlighting the accurateness of our calculations. As addi-

tional robustness check, we analyze the sub-periods with theoretic and actual market prices separately. The re-

sults do not differ qualitatively for both sub-periods confirming the robustness of our results. 

4
 This aspect will be discussed and fortified in chapter 4: Data. 
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instrument i. For a single hedge, in which only one futures contract is employed, the minimi-

zation problem is given by: 

)F,Scov(h2)rvar(h)rvar()rvar(   min 1F

2

1SP
h 1

 ,                 (1) 

The first order condition leads to the minimum variance single hedge ratio:  

)Fvar(

)F,Scov(
h 

1

1
MV  .             (2) 

4.1. Unconditional Minimum Variance Hedge Ratio Estimation (OLS) 

In the unconditional minimum variance hedge, the sample variances and covariances are 

employed. The hedge ratio is equivalent to the ordinary least squares (OLS) regression coeffi-

cient, regressing spot returns on futures returns (Houtthaker, 1959; Johnson, 1960; Stein, 

1961; Ederington, 1979; Malliaris and Urrutia, 1991; Benet, 1992). Therefore, we refer to the 

unconditional approach as OLS hedge. 

In a composite hedge with two hedging instruments, the hedge ratios are derived as 

(Chen and Sutcliffe, 2012): 

2

2F1F2F1F

2Fs2F1F2F1Fs
1

),r(rcov)(rvar)(rvar

),r(rcov),r(rcov)(rvar),r(rcov
h 




         (3) 

2

2F1F2F1F

1Fs2F1F1F2Fs
2

)r,rcov()rvar()rvar(

)r,rcov()r,rcov()rvar()r,rcov(
h




       (4) 

In the unconditional (OLS) composite hedge, the sample variances and covariances are 

employed in equations (3) and (4), assuming that the return distribution and correlations are 

constant over time. This assumption is relaxed in the conditional MGARCH models discussed 

in the next section. 
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4.2. Conditional Minimum Variance Hedge Ratio Estimation 

In the GARCH framework, the daily returns ri(t)  of the spot and future contracts i are 

modeled as:   

 )t(um)t(r iii                                                          (5) 

where ui(t) is the return residual capturing the deviation from the long run mean mi on 

day t. The residual’s mean is zero with variance hi(t). We follow this very simplified presenta-

tion of the assets conditional mean without a moving average or autoregressive component as 

the model selection analysis discussed in chapter 4 does not provide support for a moving 

average or autocorrelation effect in the return series. This model specification is in line with 

most of the previous studies (Myers, 1991; Cotter und Hanly, 2012) on MGARCH hedging 

approaches and supports the notion of short term unpredictability of spot and future returns. 

The volatility clustering of the spot and future returns is modeled in the residual term ui(t):   

)t(* )t(h)t(u iii                                                          (6) 

The standardized residual εi is normally distributed with zero mean and a constant vari-

ance of one. The return variance hi(t) is modeled based on a GARCH framework depending 

on past estimations of the return variance hi,t-1 and lagged squared residuals 2

1t,iu   with the 

coefficients K, G and A and lag parameters P and Q
5
. 

  



Q

1j

2

j-tj

P

1n

n-tnii uAhGK(t)hΘ|(t)rvar                                (7) 

In the MGARCH setting, hi(t) are the elements of the conditional covariance matrix Ht. In 

line with the hedging studies of Kroner and Sultan (1993), Park and Schwitzer (1995), Bera, 

                                                 
5
 The data analysis provided in chapter 3 supports our approach to employ a very parsimonious GARCH(1,1) 

model with P and Q equal to one which is line with Myers (1991); Baillie and Meyers (1991), Bera, Garia and 

Rho (1997), Miffre, (2004), Cotter and Hanly (2012). 
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Garcia and Roh (1997), Lien, Tse and Tsui (2002), Byström (2003), Carbonez, Nguyen and 

Sercu (2011), we adopt the constant conditional correlation (CCC) MGARCH specification 

proposed by Bollerslev (1990) to model the covariance matrix Ht. Based on information crite-

ria for model selection, we employ a parsimonious CCC-MGARCH(1,1) model where the 

diagonal elements of the conditional covariance matrix Ht (conditional variance of the spot 

and future series) are dependent on their past estimations 1t,ih  and the variance shock in the 

previous period 
2

1t,iu  .  

 
2

1t,S1t,Ss AuGhK)t(h                                                       (8a) 

2

1t,Fn1t,FnFn AuGhK)t(h                            with    2,1n   (8b) 

The conditional covariance between the spot and future returns is defined indirectly by 

the following variance correlation relationship: 

 )t(),t(*)t(h*)t(h)t(h FnSFn,sFn,s              with    2,1n      (9) 

The conditional covariance matrix Ht is thus defined as: 

 ttt RDDH                                                           (10) 

where Dt presents the diagonal matrix of conditional standard deviations and R is the cor-

relation matrix of the standardized residuals )t(i  which under the CCC-MGARCH specifica-

tion is assumed to be constant over the estimation period. Given the assumption of constant 

correlation, the matrix R is equal to the sample correlation matrix (Bollerslev, 1990).  

However, particularly during crisis periods, correlations might fluctuate over time and the 

assumption of constant correlations might be incorrect, resulting in severe hedging errors. 

Therefore, in addition to the CCC-MGARCH model, we relax the assumption of constant 
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correlations and implement the dynamic conditional correlation (DCC) MGARCH model of 

Engle (2002). This is the first study that adopts this model for estimating minimum variance 

hedge ratios. In this setting, the correlations of standardized residuals are time varying and are 

modeled within a separate GARCH framework for the covariance of standardized residuals

Fn,tSq .  In this framework the covariance is modeled as a function of past covariance estima-

tions ( vtq  ), contemporaneous covariance shocks  wt,Fnwt,s    and the sample covariance

Fn,sq : 

   








 


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The conditional covariance matrix Ht in the DCC MGARCH model is defined as: 

tttt DRDH                                                         (12)                  

with t,Fnt,SFn,tSFnS h*h*q))t(),t((   being the elements of the time varying corre-

lation matrix tR . 

We compute each unconditional (OLS) and conditional (CCC and DCC) hedging strategy 

out-of-sample for the period from 2000 to 2013. Out-of-sample means that we use daily re-

turn data available until day (t) to compute the hedge ratio employed on the next day (t+1). 

We employ rolling estimation windows of 250 days with equally weighted observations in the 

base case and implement different estimation windows as robustness check. Figure 3 provides 

an overview of the hedging approaches employed in this study including the required number 

of estimation parameters and the estimation procedure. 
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5. Empirical Results: OLS versus GARCH Hedging Strategies 

5.1. Descriptive Statistics 

Descriptive statistics of the daily return series for the JPM bond index (price index), the 

German Bund futures and the Italian BTP futures are provided in table 1. Panel A presents the 

descriptive statistics for the pre-crisis period from 2000 to 2006, and panel B includes the 

statistics for the financial and sovereign debt crisis period ranging from 2007 to 2013. The 

average annualized daily return of the JPM government bond price index is negative during 

the first period but positive for the second period. This observation can partly be explained by 

the changing interest rate environment. While interest rates in Europe slightly increased from 

2000 to 2006, interest rates declined to very low levels between 2007 and 2013. All return 

series exhibit substantial excess kurtosis and the null hypothesis of normally distributed re-

turns is rejected at the 1%-level. To account for non-normal returns and tail-risk, we compare 

the value-at-risk and the lower partial moments for the hedged and the unhedged portfolio as 

described in section 2. The augmented Dickey Fuller tests with lags from 1 to 30 do not indi-

cate any sign of non-stationarity. 

In Figure 4 we present the rolling correlation coefficients of the JPM bond index returns 

with the German Bund and Italian BTP10 futures returns.  The figure illustrates that the corre-

lations between the bond portfolio returns and the futures returns fluctuate substantially over 

time. Therefore, the constant conditional correlation (CCC) and dynamic conditional correla-

tion (DCC) models might be better suited for hedging than the OLS approach, which assumes 

constant correlations within the sample period. However, by employing a rolling sample esti-

mation method, the OLS model might partially capture the changing correlations. Moreover, 

figure 4 illustrates that the correlation between the Bund future and the JPM index declines 

sharply subsequent to March 2010, indicating that the Bund futures contract lost its ad-
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vantages as an efficient hedging instrument for hedging EMU bond portfolios after 2010. 

Thus, an additional hedging instrument might be required such as the BTP futures to improve 

the hedging result during this crisis period. 

[Table 1 about here] 

5.2. GARCH Model Selection  

To select the appropriate GARCH model, we rely on information criteria for model selec-

tion. We estimate different GARCH models with varying lag parameters for the conditional 

variance (P,Q) and the conditional mean (R,M). Based on the Schwarz-Bayes information 

criterion (BIC) for model selection, the ARMA (0,0), GARCH(1,1) model provides the best 

specification for capturing the conditional mean and return variances for the JPM, Bund- and 

BTP10 futures. An additional likelihood ratio test validates this result. The model residuals do 

not show any sign of significant autocorrelation (Ljung-Box-Pierce-Q test) or 

heteroscedasticity (Engle-ARCH-test), confirming the accurateness of the selected model. 

5.3. Analysis of optimal Hedge Ratios 

In Figure 5 we present the time-varying optimal hedge ratios for the period from 2000 to 

2013 for the single hedges with the Bund and BTP10 futures contracts, for the OLS (bold 

line), the CCC- (left-hand-side) and the DCC-GARCH (right-hand-side) models. Figure 6 

shows the optimal hedge ratio for the composite hedges, simultaneously employing Bund and 

BTP10-futures contracts. The figures illustrate that the GARCH optimal hedge ratios fluctuate 

substantially over time, resulting in enormous futures turnovers and transaction costs. In con-

trast, the OLS hedge ratios exhibit only moderate variations over time. Moreover, it is evident 

that the hedge ratios based on MGARCH models particularly fluctuate during the period from 

2010 to 2012 when the EMU sovereign debt crisis was at its summit. The hedging effective-
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ness measures in the next section provide further insights on the relative performance of the 

different hedging strategies. 

5.4. Hedging Effectiveness Measures  

Next, we compute several hedging effectiveness measures to evaluate the quality of the 

employed hedging strategies. First we compute the variance reduction of the hedged relative 

to the unhedged portfolio according to equation (13):  

)var(r

)var(r
-1Reduction Variance

S

H ,                       (13) 

where (rH) is the return of the hedged portfolio and (rS) is the return of the unhedged port-

folio, i.e. the return of the bond portfolio (Ederington, 1979).  

In line with Cotter and Hanly (2012), we additionally compute alternative measures of 

risk reduction including the reduction of a portfolio’s value-at-risk (according to equation 14) 

and the reduction of a portfolio’s lower partial moments (LPM) (equation 15), thereby ac-

counting for non-normally distributed returns and the associated tail risk which particularly 

might exist during the sovereign debt crisis period:  

S

H

90%-VaR

90%-VaR
-1Reduction-90%-VaR  ,              (14) 

S

H

LPM

LPM
-1ductionRePML  .                    (15) 

VaR-90%H (LPMH) is the 90%-value-at-risk (lower partial moment) of the empirical dis-

tribution of the realized hedged position’s returns and (VaR-90%S) (LPMS) is the 90%-value-

at-risk (lower partial moment) of the empirical distribution of the realized unhedged bond 

portfolio returns. VaR-90% is the 10%-quantile of the empirical return distribution. The lower 
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partial moment (LPM) is computed as average loss where loss is defined as return smaller 

than zero. To estimate the transaction costs involved with each hedging strategy, we compute 

the futures trading volume of each hedging strategy. In line with Chen and Sutcliffe (2012), 

we assume a linear relationship between transaction costs and futures positions traded and 

proxy transaction costs by the value of futures positions traded each year. The required yearly 

futures trading (FTi) to implement hedging strategy (i) is the average absolute change in daily 

hedge ratios (h) over the T rebalancing points in time and across the N implemented hedging 

instruments multiplied with the number of trading days per year (250): 

   250hh
T

1
FT     

T

1t

N

1j

tj,i,1tj,i,i  
 

 ,        (16) 

where         denotes the hedge ratio of futures j at time t under hedging strategy i. If two 

hedging strategies achieve the same hedging effectiveness, the one with the lower turnover is 

preferably, because its implementation requires lower transaction costs. 

Table 2 presents the hedging effectiveness measures for the OLS, CCC- and DCC-

GARCH hedging strategies. Panel A includes the results for the first sub-period (2000-2006). 

During this period the Bund futures was the only available futures contracts on EMU gov-

ernment bonds. The hedging effectiveness measures indicate that the OLS hedges with the 

Bund futures contract worked well. The portfolio variance was reduced by over 67% with the 

OLS approach. CCC- and DCC-GARCH models only marginally enhanced the hedging effec-

tiveness, while the futures turnover increased dramatically. Thus, MGARCH models do not 

seem to pay off during the non-crises period. 

Panel B of table 2 presents the hedging effectiveness measures for the second sub-period 

from 2007 to 2013 for single hedges, either using the Bund or the BTP10 futures contracts. 

The results reveal that the BTP10 futures achieve a higher variance and tail risk reduction 
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than the Bund futures for all analyzed hedging strategies. The CCC-GARCH model works 

slightly better than the OLS hedging approach. Interestingly, the DCC-GARCH model 

achieves a substantially higher hedging effectiveness compared to OLS with the Bund futures, 

indicating that the DCC-GARCH model is better suited to capture the changing correlation 

structure during the sovereign debt crisis.  

Panel C of table 2 includes the hedging effectiveness measures for the composite hedges 

with the Bund and the BTP10 futures. The results reveal that the composite hedges almost 

achieve the same hedging results during the crisis period (2007-2013) as the single hedge with 

the Bund during the pre-crisis (2000-2006) period (panel A). Surprisingly, for the composite 

hedges the CCC- and DCC-GARCH models perform slightly worse than the simple OLS ap-

proach. The likely explanation is that in the MGARCH models the estimation errors rapidly 

increase with the number of estimation parameters and hence with the number of hedging 

instruments. Consequently, in composite hedges the theoretic advantages of an improved 

modeling with the MGARCH model are outweighed by estimation errors.  

To analyze the relative performance of the hedging approaches over time, we compute 

the rolling variance reduction which is presented in Figure 7. Evidently, there are some peri-

ods in which the MGARCH models substantially outperform OLS hedges. However, most of 

the time there are only marginal differences in the hedging performance of MGARCH com-

pared to OLS hedging strategies.  

Summarizing our results so far, we conclude that, on the one hand, hedging strategies 

based on MGARCH models improve the hedging results of OLS single-hedges. However, on 

the other hand, MGARCH models have serious problems arising from estimation errors, re-

sulting in inferior hedging results in composite hedges and a drastic increase in futures turno-

ver. Moreover, the benefits of MGARCH hedging strategies are only observable in some 
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short sub-periods, while mostly there are only marginal differences in the hedging effective-

ness between the different hedging strategies. Implementing a Bayesian approach that con-

trols for estimation errors in the MGARCH models might be able to improve the hedging per-

formance. This approach is analyzed in the next section. 

6. Bayesian Approach for Model Selection  

6.1. Methodology of Bayesian Hedges 

The idea of the Bayesian approach to model selection is to improve the out-of-sample 

hedging performance by combining the strength of the OLS and MGARCH models endoge-

nously. On the one hand, MGARCH models require a large number of estimation parameters 

which involve estimation errors and often lead to inefficient hedge ratios. Moreover, GARCH 

models are very sensitive to changes in market information processing and to market shocks. 

Examples are political announcements during the Euro crisis which resulted in a high futures 

turnover and transaction costs. On the other hand, the OLS method produces very stable 

hedge ratios which, however, might be inaccurate particularly during crisis periods due to the 

assumption of constant correlations and homoscedastic returns. Overall, the OLS approach is 

not very adaptive to new distribution properties and the hedge ratio critically depends on the 

estimation window lengths. 

Poomimars, Cadle, and Theobald (2003) propose a Bayesian hedging strategy to estimate 

the optimal hedge ratios. Bayesian estimations build on a prior and sample information in 

order to control for model uncertainty and parameter estimation risk. In the literature, Bayesi-

an estimation approaches are widely established in the context of portfolio optimization for 

estimating returns or the covariance matrix of asset return (Alexander and Resnick, 1985; 

Jorion, 1985, 1986; Ledoit and Wolf, 2003a, 2003b). In the context of hedging, Bayesian es-
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timation techniques were proposed for estimating optimal mean-variance hedge ratios (Lence 

and Hayes, 1994a, 1994b; Shi and Irwin, 2005).  

The Bayesian minimum variance hedging approach by Poomimars, Cadle, and Theobald 

(2003) combines the static estimation method (OLS) and the dynamic estimation method 

(GARCH). In line with Vasicek (1973) for estimating CAPM betas, they compute the posteri-

or hedge ratio as:  

   
    1
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      (17) 

This Bayesian hedging strategy shrinks the GARCH hedge ratio to the OLS hedge ratio 

(shrinkage target) and uses the model precision of the GARCH relative to the OLS model as 

shrinkage factor. While Poomimars, Cadle, and Theobald (2003) employ the Bayesian hedg-

ing approach for single instrument hedges for commodities, we employ composite hedges on 

bond portfolios during the sovereign debt crisis. The empirical results are provided in the next 

section. 

6.2. Empirical Results of Bayesian Hedges  

In Figure 8 we present the optimal hedge ratios of the Bayesian-CCC-GARCH and the 

Bayesian-DCC-GARCH composite hedge compared to the OLS hedge ratios. The figure indi-

cates that the Bayesian hedge ratios are much less volatile compared to the pure MGARCH 

hedge ratios presented in figure 6. Hence, futures turnover and the costs of hedging are sub-

stantially reduced. The optimal hedge ratios in the Bayesian CCC and DCC approach seem to 

be very similar. The hedging effectiveness measures provided in table 3 provide further in-

sights on the performance of the strategies. Table 3 shows that the Bayesian (CCC and DCC) 

hedging approaches dominate the respective CCC- and DCC-MGARCH hedges. The Bayesi-

an strategies (CCC and DCC) achieve a larger level of risk reduction compared to pure 
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MGARCH hedges presented in table 2. Simultaneously, the Bayesian (CCC and DCC) hedg-

ing approaches substantially reduce futures turnover by roughly 50% compared to the pure 

MGARCH models.  

Compared to OLS, the Bayesian hedging approaches enhance the hedging effectiveness 

particularly during the crisis period (Panel B). However, during the relatively stable pre-crisis 

period (Panel A), the improvement of the hedging effectiveness is only marginal (below one 

percentage point). Consequently, it seems sufficient to employ the OLS model during non-

crisis periods, because the assumption of constant variances and correlations is not critically 

violated. In contrast, the superior hedging performance of the Bayesian hedge compared to 

the OLS hedge is more evident during the crisis period (2007-2013). This is in line with the 

observation that during the crisis period changing correlations, volatility clustering, and mar-

ket shocks due to political announcements are much more important than in the pre-crisis pe-

riod.  

Figure 9 summarizes the results of the rolling variance reduction of the OLS, the DCC 

and the Bayesian-DCC composite hedge during the crisis period. The figure illustrates that the 

Bayesian hedging approach virtually always achieves a larger variance reduction compared to 

OLS and the DCC-MGARCH model. Therefore, it can be concluded that the Bayesian hedg-

ing approach successfully reduces estimation error in the MGARCH models and improves the 

out-of-sample hedging performance. However, compared to OLS, Bayesian approaches result 

in a larger futures turnover and hence are more expensive to implement. Therefore, the Bayes-

ian hedging approach does not dominate OLS. The decision whether to employ an OLS or a 

Bayesian hedging strategy depends on the investor’s risk aversion and the variable transaction 

costs for trading futures. Consequently, there exists a trade-off between the additional benefits 

in risk reduction and the cost of the higher futures turnover. Thus, implementing statistically 

more demanding and sophisticated hedging approaches requires well functioning and effi-
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ciently organized futures markets, which offer market participants low transaction costs, min-

imal margin requirements, and basically no counterparty risk. Hence, introducing transaction 

taxes on futures positions as currently discussed in the European Union will not only result in 

lower market turnover and lower market liquidity, but possibly also in the choice of less so-

phisticated hedging approaches that involve lower futures turnover but may not optimally 

minimize risk for market participants. Overall this may result in an inferior risk management.     

6.3. Performance of Bayesian MGARCH vs. OLS hedges 

To gain further insights under which conditions OLS or Bayesian hedging strategies are 

relatively more attractive, we compute the performance (Sharpe ratios) of the hedging strate-

gies for different levels of transaction costs.
6
 We assume a linear relationship between trans-

action costs and futures positions traded similar to Chen and Sutcliffe (2012). In Table 4 we 

present the Sharpe ratio measures for the OLS and the Bayesian hedging strategies. The 

Sharpe ratio measures are computed net of transaction costs for variable transaction costs for 

futures trading between 0 and 50 basis points. Panel A presents the results for the non-crisis 

period (2000 to 2006) for hedges with the Bund-futures. In Panel B we provide the results for 

the crisis period (2007 to 2013) for composite hedges with the Bund and BTP10 futures. The 

results in Panel A indicate that the OLS approach was sufficient for hedging EMU bond port-

folios during the non-crisis period. The Bayesian CCC MGARCH approach only marginally 

improved the Sharpe ratio of the OLS hedged portfolio for very low variable transaction costs 

(below 10 basis points). For higher transaction costs the optimal hedging strategy (based on 

the Sharpe ratio as selection criteria) was the OLS approach.  

However, the ranking of optimal hedging strategies is different for the 2007 to 2013 crisis 

period. Panel B of table 4 reveals that during the crisis period the Bayesian-DCC strategy 

                                                 
6
 To compute Sharpe ratios we use a risk-free rate of zero. Usually the risk-free rate is approximated by govern-

ment bond yields which does not seem plausible for evaluating EMU government bond portfolios. 
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achieved the highest Sharpe ratio for variable transaction costs up to 30 basis points. For 

higher transaction costs the OLS approach was more lucrative due to its lower futures trading 

volume. The explanation for this finding is that the Bayesian MGARCH models do improve 

the performance of OLS hedging strategies. However, this improvement is offset by transac-

tion costs if the variable transaction costs for futures trading exceed a certain level. During the 

non-crises period the critical level of transaction costs was 10 basis points, while it was ap-

proximately 35 basis points in the crisis period.
7
 This result confirms our finding that the ben-

efits of more complex hedging strategies are much higher during crisis periods than during 

‘normal’ non-crisis periods.  

7. Conclusion  

In this study we analyze hedging strategies for EMU bond portfolios for non-crises and 

crisis periods. We analyze the improvement in hedging performance when the hedging 

framework is extended from one instrument hedges (single hedges) to two instrument-hedges 

(composite hedges), employing traditional (Bund-futures) and newly (re-)introduced futures 

contracts on Italian government bonds (BTP-futures). Moreover we evaluate the improvement 

in hedging effectiveness when moving from simple OLS to more complex CCC- and DCC-

MGARCH hedging strategies (Bollerslev, 1990; Engle, 2002). To overcome the potential 

problems of estimation errors and oversensitivity to market shocks, we additionally employ 

Bayesian hedging strategies based on Poomimars, Cadle and Theobald (2003) and extend the 

approach on composite hedges for hedging EMU bond portfolios. 

Our empirical results suggest that while hedging with the Bund futures contract worked 

well during the pre-crisis period from 2000 to 2006, it performed poorly during the crisis pe-

riod with hedging effectiveness measures dropping from almost 70% to below 40%. Howev-

                                                 
7
 Critical value of transaction costs refers to the level of transaction costs at which two hedging strategies 

achieve the same Sharpe ratio. 
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er, simultaneously employing Bund and BTP10 futures contracts in composite hedges almost 

achieved the pre-crisis hedging results. Comparing different hedging methods, we find that 

CCC- and DCC-GARCH hedges only marginally improve the hedging effectiveness of OLS 

for single hedges. For composite hedges, GARCH strategies are even inferior to OLS due to 

estimation errors. A Bayesian hedging approach, designed to control for estimation errors, 

generates superior hedging results and involves substantial lower futures turnover (transaction 

costs) than MGARCH models. Compared to OLS, Bayesian hedges achieve a larger level of 

risk reduction but involve higher futures turnover (transaction costs). Therefore, the decision 

whether to employ OLS or Bayesian-hedges depends on the individual risk aversion and the 

variable transaction costs for trading futures. Using the Sharpe ratio after transaction costs as 

performance measure, we find that DCC MGARCH hedges outperform OLS hedges for vari-

able transaction costs up to 30 basis points during the sovereign debt crisis period. During the 

non-crisis period, however, OLS hedges are superior to MGARCH hedges if transaction costs 

are larger than 10 basis points. Overall our results suggest that EMU bond portfolio managers 

should employ composite hedges with the Bund and BTP-Futures and rely on OLS or Bayesi-

an hedging techniques. While during ‘normal’ non-crisis periods it is sufficient to rely on 

OLS hedge ratios, the Bayesian composite hedging strategy is particularly beneficial during 

crisis periods when risk reduction opportunities are mostly needed.  
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Figure 1: Yield Spreads to German Government Bond Yields – Maturity 10 y 

 

 

 

 

 

Figure 2: Political events during the sovereign debt crisis  
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Figure 3: Overview of Hedging Approaches  

 

 

 

 

 

Figure 4: Rolling correlation coefficients of EMU bond portfolio returns and futures returns. 
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Figure 5: Analysis of Optimal Hedge Ratios: OLS vs. CCC/DCC-GARCH (Single Hedges). 

 

 

Figure 6: Analysis of Optimal Hedge Ratios: OLS vs. CCC/DCC-GARCH (Composite Hedges). 
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Figure 7: Rolling Hedging Effectiveness: OLS vs. CCC-GARCH and DCC-GARCH 

 

Figure 8: Analysis of Optimal Hedge Ratios: OLS vs. CCC/DCC-GARCH (Composite Hedges). 
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Figure 9: Rolling Hedging Effectiveness Composite OLS, CCC/DCC, and Bayesian 

 

 

 

 

Table 1: Descriptive statistics of monthly return time series 
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Panel A: 2000-2006 JP Morgan PI Bund BTP 10Y

Sample Size 2087 2087 /

Mean (ann.) -1,38% 0,03% /

Median 0,00% 0,01% /

Volatility (ann.) 2,76% 5,06% /

Kurtosis 1,52 1,49 /

Skewness -0,49 -0,48 /

Max 0,67% 1,23% /

Min -0,86% -1,55% /

Normal (JB-Test 99%) no no /

Panel B: 2007-2013 JP Morgan PI Bund BTP 10Y

Sample Size 1784 1784 1784

Mean (ann.) 0,87% 2,83% -0,01%

Median 0,00% 0,01% 0,00%

Volatility (ann.) 3,29% 6,40% 9,19%

Kurtosis 8,23 1,61 14,50

Skewness 0,75 -0,15 0,41

Max 1,85% 1,96% 5,68%

Min -0,95% -2,01% -3,87%

Normal (JB-Test 99%) no no no
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Table 2: Hedge Effectiveness: OLS, CCC, DCC, single and composite hedges 

 

 

 

Table 3: Analysis of Hedge Effectiveness for Bayesian Hedging Approaches 

 

  

 

Panel A: 2000-2006: Single hedge

Variance Reduction

VaR-99% Reduction

Lower Partial Moment Reduction

Turnover p.a.

Panel B: 2007-2013: Single hedge Bund BTP10 Bund BTP10 Bund BTP10

Variance Reduction 37,66% 45,67% 38,37% 46,61% 42,39% 46,74%

VaR-99% Reduction 23,41% 34,36% 23,77% 33,51% 29,09% 31,29%

Lower Partial Moment Reduction 28,96% 30,83% 29,32% 32,45% 31,26% 32,03%

Turnover p.a. 0,46        0,45        5,74        7,75        12,19      9,59        

Panel C: 2007-2013: Composite hedge

Variance Reduction

VaR-99% Reduction

Lower Partial Moment Reduction

Turnover p.a.

Evaluation of Hedge Strategy 
Hedging Strategy

OLS CCC-GARCH DCC-GARCH

Bund Bund Bund

67,68% 68,19% 68,15%

49,82% 50,25% 50,14%

44,61% 44,77% 44,57%

0,38 4,02 6,46

Bund & BTP10 Bund & BTP10 Bund & BTP10

65,02%

51,36%

48,71%

15,09

65,76%

50,70%

49,08%

0,89

64,12%

48,72%

47,81%

11,90

 

Panel A: 2000-2007: Single Hedge (Bund) absolute ∆ OLS absolute ∆ OLS

Variance Reduction 68,40% 0,72% 68,42% 0,74%

VaR-99% Reduction 49,69% -0,12% 49,91% 0,10%

Lower Partial Moment Reduction 44,97% 0,36% 44,88% 0,27%

Turnover p.a. 2,07 1,69 3,28 2,90

Panel B: 2007-2013: Single hedge (BTP10)

Variance Reduction 48,47% 2,80% 48,81% 3,13%

VaR-99% Reduction 37,30% 2,95% 37,16% 2,81%

Lower Partial Moment Reduction 32,48% 1,65% 32,43% 1,60%

Turnover p.a. 3,89 3,44 4,81 4,36

Panel B: 2007-2013: Composite hedge (Bund & BTP10)

Variance Reduction 68,24% 2,48% 68,58% 2,81%

VaR-99% Reduction 52,84% 2,14% 53,18% 2,48%

Lower Partial Moment Reduction 49,91% 0,83% 50,37% 1,29%

Turnover p.a. 6,55 5,66 8,48 7,59

Evaluation of Hedge Strategy 

OLS-CCC OLS-DCC

Bayesian  Composite hedge (Bund & BTP10)
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Table 4: Performance of Hedging Approaches net of Transaction Costs 

 

 

 

 

 
variable transaction 

costs unhedged OLS Bayesian OLS-CCC Bayesian OLS-DCC

Panel A: 2000-2007: Single Hedge (Bund)

0bp 1,91 2,92 2,93 2,91

5bp 1,91 2,92 2,93 2,90

10bp 1,91 2,93 2,93 2,90

15bp 1,91 2,92 2,92 2,89

20bp 1,91 2,92 2,91 2,88

25bp 1,91 2,92 2,90 2,86

30bp 1,91 2,92 2,90 2,85

35bp 1,91 2,92 2,89 2,84

40bp 1,91 2,92 2,88 2,83

45bp 1,91 2,92 2,88 2,82

50bp 1,91 2,78 2,14 1,65variable transaction 

costs unhedged OLS Bayesian OLS-CCC Bayesian OLS-DCC

Panel B: 2007-2013: Composite Hedge (Bund+BTP10)

0bp 1,34 1,85 1,91 1,98

5bp 1,34 1,85 1,89 1,96

10bp 1,34 1,84 1,88 1,94

15bp 1,34 1,84 1,86 1,92

20bp 1,34 1,84 1,84 1,89

25bp 1,34 1,84 1,82 1,87

30bp 1,34 1,84 1,81 1,85

35bp 1,34 1,83 1,79 1,82

40bp 1,34 1,83 1,77 1,80

45bp 1,34 1,83 1,75 1,78

50bp 1,34 1,83 1,74 1,75

Hedging Strategy


